Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
JAMA Neurol ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619853

RESUMO

Importance: Factors associated with clinical heterogeneity in Alzheimer disease (AD) lay along a continuum hypothesized to associate with tangle distribution and are relevant for understanding glial activation considerations in therapeutic advancement. Objectives: To examine clinicopathologic and neuroimaging characteristics of disease heterogeneity in AD along a quantitative continuum using the corticolimbic index (CLix) to account for individuality of spatially distributed tangles found at autopsy. Design, Setting, and Participants: This cross-sectional study was a retrospective medical record review performed on the Florida Autopsied Multiethnic (FLAME) cohort accessioned from 1991 to 2020. Data were analyzed from December 2022 to December 2023. Structural magnetic resonance imaging (MRI) and tau positron emission tomography (PET) were evaluated in an independent neuroimaging group. The FLAME cohort includes 2809 autopsied individuals; included in this study were neuropathologically diagnosed AD cases (FLAME-AD). A digital pathology subgroup of FLAME-AD cases was derived for glial activation analyses. Main Outcomes and Measures: Clinicopathologic factors of heterogeneity that inform patient history and neuropathologic evaluation of AD; CLix score (lower, relative cortical predominance/hippocampal sparing vs higher, relative cortical sparing/limbic predominant cases); neuroimaging measures (ie, structural MRI and tau-PET). Results: Of the 2809 autopsied individuals in the FLAME cohort, 1361 neuropathologically diagnosed AD cases were evaluated. A digital pathology subgroup included 60 FLAME-AD cases. The independent neuroimaging group included 93 cases. Among the 1361 FLAME-AD cases, 633 were male (47%; median [range] age at death, 81 [54-96] years) and 728 were female (53%; median [range] age at death, 81 [53-102] years). A younger symptomatic onset (Spearman ρ = 0.39, P < .001) and faster decline on the Mini-Mental State Examination (Spearman ρ = 0.27; P < .001) correlated with a lower CLix score in FLAME-AD series. Cases with a nonamnestic syndrome had lower CLix scores (median [IQR], 13 [9-18]) vs not (median [IQR], 21 [15-27]; P < .001). Hippocampal MRI volume (Spearman ρ = -0.45; P < .001) and flortaucipir tau-PET uptake in posterior cingulate and precuneus cortex (Spearman ρ = -0.74; P < .001) inversely correlated with CLix score. Although AD cases with a CLix score less than 10 had higher cortical tangle count, we found lower percentage of CD68-activated microglia/macrophage burden (median [IQR], 0.46% [0.32%-0.75%]) compared with cases with a CLix score of 10 to 30 (median [IQR], 0.75% [0.51%-0.98%]) and on par with a CLix score of 30 or greater (median [IQR], 0.40% [0.32%-0.57%]; P = .02). Conclusions and Relevance: Findings show that AD heterogeneity exists along a continuum of corticolimbic tangle distribution. Reduced CD68 burden may signify an underappreciated association between tau accumulation and microglia/macrophages activation that should be considered in personalized therapy for immune dysregulation.

2.
Acta Neuropathol ; 147(1): 70, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598053

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4-mediated AD pathology. To test this, we leveraged whole-genome sequencing (WGS) data in the National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain (COL6A2) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. An independent analysis in a large cohort of 7185 APOEε4 homozygous carriers found that rs140926439 variant in FN1 was protective of AD (OR = 0.29; 95% CI [0.11, 0.78], P = 0.014) and delayed age at onset of disease by 3.37 years (95% CI [0.42, 6.32], P = 0.025). The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4-mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b-the ortholog for human FN1. We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling, and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests that vascular deposition of FN1 is related to the pathogenicity of APOEε4, and LOF variants in FN1 may reduce APOEε4-related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.


Assuntos
Doença de Alzheimer , Fibronectinas , Idoso , Animais , Humanos , Doença de Alzheimer/genética , Fibronectinas/genética , Variação Genética/genética , Gliose , Peixe-Zebra
3.
Aging Cell ; : e14153, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520065

RESUMO

The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.

4.
Acta Neuropathol ; 147(1): 54, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472443

RESUMO

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Substância Negra/patologia , Emaranhados Neurofibrilares/patologia
5.
medRxiv ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38313266

RESUMO

Impaired glucose uptake in the brain is one of the earliest presymptomatic manifestations of Alzheimer's disease (AD). The absence of symptoms for extended periods of time suggests that compensatory metabolic mechanisms can provide resilience. Here, we introduce the concept of a systemic 'bioenergetic capacity' as the innate ability to maintain energy homeostasis under pathological conditions, potentially serving as such a compensatory mechanism. We argue that fasting blood acylcarnitine profiles provide an approximate peripheral measure for this capacity that mirrors bioenergetic dysregulation in the brain. Using unsupervised subgroup identification, we show that fasting serum acylcarnitine profiles of participants from the AD Neuroimaging Initiative yields bioenergetically distinct subgroups with significant differences in AD biomarker profiles and cognitive function. To assess the potential clinical relevance of this finding, we examined factors that may offer diagnostic and therapeutic opportunities. First, we identified a genotype affecting the bioenergetic capacity which was linked to succinylcarnitine metabolism and significantly modulated the rate of future cognitive decline. Second, a potentially modifiable influence of beta-oxidation efficiency seemed to decelerate bioenergetic aging and disease progression. Our findings, which are supported by data from more than 9,000 individuals, suggest that interventions tailored to enhance energetic health and to slow bioenergetic aging could mitigate the risk of symptomatic AD, especially in individuals with specific mitochondrial genotypes.

6.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260431

RESUMO

The risk of developing Alzheimer's disease (AD) significantly increases in individuals carrying the APOEε4 allele. Elderly cognitively healthy individuals with APOEε4 also exist, suggesting the presence of cellular mechanisms that counteract the pathological effects of APOEε4 ; however, these mechanisms are unknown. We hypothesized that APOEε4 carriers without dementia might carry genetic variations that could protect them from developing APOEε4- mediated AD pathology. To test this, we leveraged whole genome sequencing (WGS) data in National Institute on Aging Alzheimer's Disease Family Based Study (NIA-AD FBS), Washington Heights/Inwood Columbia Aging Project (WHICAP), and Estudio Familiar de Influencia Genetica en Alzheimer (EFIGA) cohorts and identified potentially protective variants segregating exclusively among unaffected APOEε4 carriers. In homozygous unaffected carriers above 70 years old, we identified 510 rare coding variants. Pathway analysis of the genes harboring these variants showed significant enrichment in extracellular matrix (ECM)-related processes, suggesting protective effects of functional modifications in ECM proteins. We prioritized two genes that were highly represented in the ECM-related gene ontology terms, (FN1) and collagen type VI alpha 2 chain ( COL6A2 ) and are known to be expressed at the blood-brain barrier (BBB), for postmortem validation and in vivo functional studies. The FN1 and COL6A2 protein levels were increased at the BBB in APOEε4 carriers with AD. Brain expression of cognitively unaffected homozygous APOEε4 carriers had significantly lower FN1 deposition and less reactive gliosis compared to homozygous APOEε4 carriers with AD, suggesting that FN1 might be a downstream driver of APOEε4 -mediated AD-related pathology and cognitive decline. To validate our findings, we used zebrafish models with loss-of-function (LOF) mutations in fn1b - the ortholog for human FN1 . We found that fibronectin LOF reduced gliosis, enhanced gliovascular remodeling and potentiated the microglial response, suggesting that pathological accumulation of FN1 could impair toxic protein clearance, which is ameliorated with FN1 LOF. Our study suggests vascular deposition of FN1 is related to the pathogenicity of APOEε4 , LOF variants in FN1 may reduce APOEε4 -related AD risk, providing novel clues to potential therapeutic interventions targeting the ECM to mitigate AD risk.

7.
bioRxiv ; 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38260408

RESUMO

Alzheimer's disease (AD) remains a complex challenge characterized by cognitive decline and memory loss. Genetic variations have emerged as crucial players in the etiology of AD, enabling hope for a better understanding of the disease mechanisms; yet the specific mechanism of action for those genetic variants remain uncertain. Animal models with reminiscent disease pathology could uncover previously uncharacterized roles of these genes. Using CRISPR/Cas9 gene editing, we generated a knockout model for abca7, orthologous to human ABCA7 - an established AD-risk gene. The abca7 +/- zebrafish showed reduced astroglial proliferation, synaptic density, and microglial abundance in response to amyloid beta 42 (Aß42). Single-cell transcriptomics revealed abca7 -dependent neuronal and glial cellular crosstalk through neuropeptide Y (NPY) signaling. The abca7 knockout reduced the expression of npy, bdnf and ngfra , which are required for synaptic integrity and astroglial proliferation. With clinical data in humans, we showed reduced NPY in AD correlates with elevated Braak stage, predicted regulatory interaction between NPY and BDNF , identified genetic variants in NPY associated with AD, found segregation of variants in ABCA7, BDNF and NGFR in AD families, and discovered epigenetic changes in the promoter regions of NPY, NGFR and BDNF in humans with specific single nucleotide polymorphisms in ABCA7 . These results suggest that ABCA7-dependent NPY signaling is required for synaptic integrity, the impairment of which generates a risk factor for AD through compromised brain resilience.

8.
Acta Neuropathol ; 147(1): 9, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175301

RESUMO

Nuclear clearance and cytoplasmic accumulations of the RNA-binding protein TDP-43 are pathological hallmarks in almost all patients with amyotrophic lateral sclerosis (ALS) and up to 50% of patients with frontotemporal dementia (FTD) and Alzheimer's disease. In Alzheimer's disease, TDP-43 pathology is predominantly observed in the limbic system and correlates with cognitive decline and reduced hippocampal volume. Disruption of nuclear TDP-43 function leads to abnormal RNA splicing and incorporation of erroneous cryptic exons in numerous transcripts including Stathmin-2 (STMN2, also known as SCG10) and UNC13A, recently reported in tissues from patients with ALS and FTD. Here, we identify both STMN2 and UNC13A cryptic exons in Alzheimer's disease patients, that correlate with TDP-43 pathology burden, but not with amyloid-ß or tau deposits. We also demonstrate that processing of the STMN2 pre-mRNA is more sensitive to TDP-43 loss of function than UNC13A. In addition, full-length RNAs encoding STMN2 and UNC13A are suppressed in large RNA-seq datasets generated from Alzheimer's disease post-mortem brain tissue. Collectively, these results open exciting new avenues to use STMN2 and UNC13A as potential therapeutic targets in a broad range of neurodegenerative conditions with TDP-43 proteinopathy including Alzheimer's disease.


Assuntos
Doença de Alzheimer , Esclerose Amiotrófica Lateral , Demência Frontotemporal , Doença de Pick , Humanos , Doença de Alzheimer/genética , Proteínas de Ligação a DNA/genética , Splicing de RNA , RNA Mensageiro/genética , Estatmina/genética
9.
bioRxiv ; 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38076912

RESUMO

We report a highly significant correlation in brain proteome changes between Alzheimers disease (AD) and CRND8 APP695NL/F transgenic mice. However, integrating protein changes observed in the CRND8 mice with co-expression networks derived from human AD, reveals both conserved and divergent module changes. For the most highly conserved module (M42, matrisome) we find many proteins accumulate in plaques, cerebrovascular amyloid (CAA), dystrophic processes, or a combination thereof. Overexpression of two M42 proteins, midkine (Mdk) and pleiotrophin (PTN), in CRND8 mice brains leads to increased accumulation of A ß ; in plaques and in CAA; further, recombinant MDK and PTN enhance A ß ; aggregation into amyloid. Multiple M42 proteins, annotated as heparan sulfate binding proteins, bind to fibrillar A ß 42 and a non-human amyloid fibril in vitro. Supporting this binding data, MDK and PTN co-accumulate with transthyretin (TTR) amyloid in the heart and islet amyloid polypeptide (IAPP) amyloid in the pancreas. Our findings establish several critical insights. Proteomic changes in modules observed in human AD brains define an A ß ; amyloid responsome that is well conserved from mouse model to human. Further, distinct amyloid structures may serve as scaffolds, facilitating the co-accumulation of proteins with signaling functions. We hypothesize that this co-accumulation may contribute to downstream pathological sequalae. Overall, this contextualized understanding of proteomic changes and their interplay with amyloid deposition provides valuable insights into the complexity of AD pathogenesis and potential biomarkers and therapeutic targets.

10.
Nat Commun ; 14(1): 6801, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919278

RESUMO

Progressive supranuclear palsy (PSP) is a neurodegenerative parkinsonian disorder characterized by cell-type-specific tau lesions in neurons and glia. Prior work uncovered transcriptome changes in human PSP brains, although their cell-specificity is unknown. Further, systematic data integration and experimental validation platforms to prioritize brain transcriptional perturbations as therapeutic targets in PSP are currently lacking. In this study, we combine bulk tissue (n = 408) and single nucleus RNAseq (n = 34) data from PSP and control brains with transcriptome data from a mouse tauopathy and experimental validations in Drosophila tau models for systematic discovery of high-confidence expression changes in PSP with therapeutic potential. We discover, replicate, and annotate thousands of differentially expressed genes in PSP, many of which reside in glia-enriched co-expression modules and cells. We prioritize DDR2, STOM, and KANK2 as promising therapeutic targets in PSP with striking cross-species validations. We share our findings and data via our interactive application tool PSP RNAseq Atlas ( https://rtools.mayo.edu/PSP_RNAseq_Atlas/ ). Our findings reveal robust glial transcriptome changes in PSP, provide a cross-species systems biology approach, and a tool for therapeutic target discoveries in PSP with potential application in other neurodegenerative diseases.


Assuntos
Receptor com Domínio Discoidina 2 , Paralisia Supranuclear Progressiva , Tauopatias , Humanos , Animais , Camundongos , Paralisia Supranuclear Progressiva/patologia , Proteínas tau/metabolismo , Biologia de Sistemas , Tauopatias/patologia , Neuroglia/metabolismo
11.
Neurology ; 101(14): e1412-e1423, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37580158

RESUMO

BACKGROUND AND OBJECTIVES: Alzheimer disease (AD) is neuropathologically classified into 3 corticolimbic subtypes based on the neurofibrillary tangle distribution throughout the hippocampus and association cortices: limbic predominant, typical, and hippocampal sparing. In vivo, a fourth subtype, dubbed "minimal atrophy," was identified using structural MRI. The objective of this study was to identify a neuropathologic proxy for the neuroimaging-defined minimal atrophy subtype. METHODS: We applied 2 strategies in the Florida Autopsied Multi-Ethnic (FLAME) cohort to evaluate a neuropathologic proxy for the minimal atrophy subtype. In the first strategy, we selected AD cases with a Braak tangle stage IV (Braak IV) because of the relative paucity of neocortical tangle involvement compared with Braak >IV. Braak IV cases were compared with the 3 AD subtypes. In the alternative strategy, typical AD was stratified by brain weight and cases having a relatively high brain weight (>75th percentile) were defined as minimal atrophy. RESULTS: Braak IV cases (n = 37) differed from AD subtypes (limbic predominant [n = 174], typical [n = 986], and hippocampal sparing [n = 187] AD) in having the least years of education (median 12 years, group-wise p < 0.001) and the highest brain weight (median 1,140 g, p = 0.002). Braak IV cases most resembled the limbic predominant cases owing to their high proportion of APOE ε4 carriers (75%, p < 0.001), an amnestic syndrome (100%, p < 0.001), as well as older age of cognitive symptom onset and death (median 79 and 85 years, respectively, p < 0.001). Only 5% of Braak IV cases had amygdala-predominant Lewy bodies (the lowest frequency observed, p = 0.017), whereas 32% had coexisting pathology of Lewy body disease, which was greater than the other subtypes (p = 0.005). Nearly half (47%) of the Braak IV samples had coexisting limbic predominant age-related TAR DNA-binding protein 43 encephalopathy neuropathologic change. Cases with a high brain weight (n = 201) were less likely to have amygdala-predominant Lewy bodies (14%, p = 0.006) and most likely to have Lewy body disease (31%, p = 0.042) compared with those with middle (n = 455) and low (n = 203) brain weight. DISCUSSION: The frequency of Lewy body disease was increased in both neuropathologic proxies of the minimal atrophy subtype. We hypothesize that Lewy body disease may underlie cognitive decline observed in minimal atrophy cases.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Humanos , Doença de Alzheimer/patologia , Estudos Retrospectivos , Doença por Corpos de Lewy/patologia , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Atrofia/patologia
12.
Neurology ; 101(14): e1402-e1411, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37580163

RESUMO

BACKGROUND AND OBJECTIVES: Recent advances in blood-based biomarkers offer the potential to revolutionize the diagnosis and management of Alzheimer disease (AD), but additional research in diverse populations is critical. We assessed the profiles of blood-based AD biomarkers and their relationships to cognition and common medical comorbidities in a biracial cohort. METHODS: Participants were evaluated through the Mayo Clinic Jacksonville Alzheimer Disease Research Center and matched on age, sex, and cognitive status. Plasma AD biomarkers (ß-amyloid peptide 1-42 [Aß42/40], plasma tau phosphorylated at position 181 [p-tau181], glial fibrillary acidic protein [GFAP], and neurofilament light) were measured using the Quanterix SiMoA HD-X analyzer. Cognition was assessed with the Mini-Mental State Examination. Wilcoxon rank sum tests were used to assess for differences in plasma biomarker levels by sex. Linear models tested for associations of self-reported race, chronic kidney disease (CKD), and vascular risk factors with plasma AD biomarker levels. Additional models assessed for interactions between race and plasma biomarkers in predicting cognition. RESULTS: The sample comprised African American (AA; N = 267) and non-Hispanic White (NHW; N = 268) participants, including 69% female participants and age range 43-100 (median 80.2) years. Education was higher in NHW participants (median 16 vs 12 years, p < 0.001) while APOE ε4 positivity was higher in AA participants (43% vs 34%; p = 0.04). We observed no differences in plasma AD biomarker levels between AA and NHW participants. These results were unchanged after stratifying by cognitive status (unimpaired vs impaired). Although the p-tau181-cognition association seemed stronger in NHW participants while the Aß42/40-cognition association seemed stronger in AA participants, these findings did not survive after excluding individuals with CKD. Female participants displayed higher GFAP (177.5 pg/mL vs 157.73 pg/mL; p = 0.002) and lower p-tau181 (2.62 pg/mL vs 3.28 pg/mL; p = 0.001) levels than male participants. Diabetes was inversely associated with GFAP levels (ß = -0.01; p < 0.001). DISCUSSION: In a biracial community-based sample of adults, we observed that sex differences, CKD, and vascular risk factors, but not self-reported race, contributed to variation in plasma AD biomarkers. Although some prior studies have reported primary effects of race/ethnicity, our results reinforce the need to account for broad-based medical and social determinants of health (including sex, systemic comorbidities, and other factors) in effectively and equitably deploying plasma AD biomarkers in the general population.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Adulto , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Proteínas tau , Peptídeos beta-Amiloides , Cognição , Biomarcadores , Disfunção Cognitiva/psicologia
13.
medRxiv ; 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37546878

RESUMO

Metabolic dysregulation is a hallmark of neurodegenerative diseases, including Alzheimer's disease (AD) and progressive supranuclear palsy (PSP). While metabolic dysregulation is a common link between these two tauopathies, a comprehensive brain metabolic comparison of the diseases has not yet been performed. We analyzed 342 postmortem brain samples from the Mayo Clinic Brain Bank and examined 658 metabolites in the cerebellar cortex and the temporal cortex between the two tauopathies. Our findings indicate that both diseases display oxidative stress associated with lipid metabolism, mitochondrial dysfunction linked to lysine metabolism, and an indication of tau-induced polyamine stress response. However, specific to AD, we detected glutathione-related neuroinflammation, deregulations of enzymes tied to purines, and cognitive deficits associated with vitamin B. Taken together, our findings underscore vast alterations in the brain's metabolome, illuminating shared neurodegenerative pathways and disease-specific traits in AD and PSP.

14.
Stem Cell Res Ther ; 14(1): 214, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37605285

RESUMO

BACKGROUND: The apolipoprotein E (APOE) gene is the strongest genetic risk factor for Alzheimer's disease (AD); however, how it modulates brain homeostasis is not clear. The apoE protein is a major lipid carrier in the brain transporting lipids such as cholesterol among different brain cell types. METHODS: We generated three-dimensional (3-D) cerebral organoids from human parental iPSC lines and its isogenic APOE-deficient (APOE-/-) iPSC line. To elucidate the cell-type-specific effects of APOE deficiency in the cerebral organoids, we performed scRNA-seq in the parental and APOE-/- cerebral organoids at Day 90. RESULTS: We show that APOE deficiency in human iPSC-derived cerebral organoids impacts brain lipid homeostasis by modulating multiple cellular and molecular pathways. Molecular profiling through single-cell RNA sequencing revealed that APOE deficiency leads to changes in cellular composition of isogenic cerebral organoids likely by modulating the eukaryotic initiation factor 2 (EIF2) signaling pathway as these events were alleviated by the treatment of an integrated stress response inhibitor (ISRIB). APOE deletion also leads to activation of the Wnt/ß-catenin signaling pathway with concomitant decrease of secreted frizzled-related protein 1 (SFRP1) expression in glia cells. Importantly, the critical role of apoE in cell-type-specific lipid homeostasis was observed upon APOE deletion in cerebral organoids with a specific upregulation of cholesterol biosynthesis in excitatory neurons and excessive lipid accumulation in astrocytes. Relevant to human AD, APOE4 cerebral organoids show altered neurogenesis and cholesterol metabolism compared to those with APOE3. CONCLUSIONS: Our work demonstrates critical roles of apoE in brain homeostasis and offers critical insights into the APOE4-related pathogenic mechanisms.


Assuntos
Apolipoproteínas E , Cérebro , Células-Tronco Pluripotentes Induzidas , Humanos , Apolipoproteína E4 , Apolipoproteínas E/genética , Diferenciação Celular , Organoides , Cérebro/metabolismo
15.
J Stroke Cerebrovasc Dis ; 32(8): 107244, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37422928

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is a common retinal degenerative disorder among older individuals. Amyloid deposits, a hallmark of cerebral amyloid angiopathy (CAA), may be involved in the pathogenesis of AMD. Since amyloid deposits may contribute to the development of both AMD and CAA, we hypothesized that patients with AMD have a higher prevalence of CAA. OBJECTIVE: To compare the prevalence of CAA in patients with or without AMD matched for age. METHODS: We conducted a cross-sectional, 1:1 age-matched, case-control study of patients ≥40 years of age at the Mayo Clinic who had undergone both retinal optical coherence tomography and brain MRI from 2011 to 2015. Primary dependent variables were probable CAA, superficial siderosis, and lobar and deep cerebral microbleeds (CMBs). The relationship between AMD and CAA was assessed using multivariable logistic regression and was compared across AMD severity (none vs early vs late AMD). RESULTS: Our analysis included 256 age-matched pairs (AMD 126, no AMD 130). Of those with AMD, 79 (30.9%) had early AMD and 47 (19.4%) had late AMD. The mean age was 75±9 years, and there was no significant difference in vascular risk factors between groups. Patients with AMD had a higher prevalence of CAA (16.7% vs 10.0%, p=0.116) and superficial siderosis (15.1% vs 6.2%, p=0.020), but not deep CMB (5.2% vs 6.2%, p=0.426), compared to those without AMD. After adjusting for covariates, having late AMD was associated with increased odds of CAA (OR 2.83, 95% CI 1.10-7.27, p=0.031) and superficial siderosis (OR 3.40, 95%CI 1.20-9.65, p=0.022), but not deep CMB (OR 0.7, 95%CI 0.14-3.51, p=0.669). CONCLUSIONS: AMD was associated with CAA and superficial siderosis but not deep CMB, consistent with the hypothesis that amyloid deposits play a role in the development of AMD. Prospective studies are needed to determine if features of AMD may serve as biomarkers for the early diagnosis of CAA.


Assuntos
Angiopatia Amiloide Cerebral , Degeneração Macular , Siderose , Humanos , Idoso , Idoso de 80 Anos ou mais , Adulto , Hemorragia Cerebral/etiologia , Estudos de Casos e Controles , Estudos Transversais , Placa Amiloide/complicações , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/epidemiologia , Imageamento por Ressonância Magnética/efeitos adversos , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/epidemiologia
16.
NPJ Regen Med ; 8(1): 33, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37429840

RESUMO

Neurogenesis, crucial for brain resilience, is reduced in Alzheimer's disease (AD) that induces astroglial reactivity at the expense of the pro-neurogenic potential, and restoring neurogenesis could counteract neurodegenerative pathology. However, the molecular mechanisms promoting pro-neurogenic astroglial fate despite AD pathology are unknown. In this study, we used APP/PS1dE9 mouse model and induced Nerve growth factor receptor (Ngfr) expression in the hippocampus. Ngfr, which promotes neurogenic fate of astroglia during the amyloid pathology-induced neuroregeneration in zebrafish brain, stimulated proliferative and neurogenic outcomes. Histological analyses of the changes in proliferation and neurogenesis, single-cell transcriptomics, spatial proteomics, and functional knockdown studies showed that the induced expression of Ngfr reduced the reactive astrocyte marker Lipocalin-2 (Lcn2), which we found was sufficient to reduce neurogenesis in astroglia. Anti-neurogenic effects of Lcn2 was mediated by Slc22a17, blockage of which recapitulated the pro-neurogenicity by Ngfr. Long-term Ngfr expression reduced amyloid plaques and Tau phosphorylation. Postmortem human AD hippocampi and 3D human astroglial cultures showed elevated LCN2 levels correlate with reactive gliosis and reduced neurogenesis. Comparing transcriptional changes in mouse, zebrafish, and human AD brains for cell intrinsic differential gene expression and weighted gene co-expression networks revealed common altered downstream effectors of NGFR signaling, such as PFKP, which can enhance proliferation and neurogenesis in vitro when blocked. Our study suggests that the reactive non-neurogenic astroglia in AD can be coaxed to a pro-neurogenic fate and AD pathology can be alleviated with Ngfr. We suggest that enhancing pro-neurogenic astroglial fate may have therapeutic ramifications in AD.

17.
Neurol Genet ; 9(5): e200086, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37476022

RESUMO

Background and Objectives: Variants in the CWH43 gene have been associated with normal pressure hydrocephalus (NPH). We aimed to replicate these findings, identify additional CWH43 variants, and further define the clinical phenotype associated with CWH43 variants. Methods: We determined the prevalence of CWH43 variants by whole-genome sequencing (WGS) in 94 patients with NPH. The odds of having CWH43 variant carriers develop NPH were determined through comparison with 532 Mayo Clinic Biobank volunteers without a history of NPH. For patients with NPH, we documented the head circumference, prevalence of disproportionate enlargement of subarachnoid hydrocephalus (DESH), microvascular changes on MRI quantified by the Fazekas scale, and ambulatory response to ventriculoperitoneal shunting. Results: We identified rare (MAF <0.05) coding CWH43 variants in 15 patients with NPH. Ten patients (Leu533Terfs, n = 8; Lys696Asnfs, n = 2) harbored previously reported predicted loss-of-function variants, and combined burden analysis confirmed risk association with NPH (OR 2.60, 95% CI 1.12-6.03, p = 0.027). Additional missense variations observed included Ile292Thr (n = 2), Ala469Ser (n = 2), and Ala626Val (n = 1). Though not quite statistically significant, in single variable analysis, the odds of having a head circumference above the 75th percentile of normal controls was more than 5 times higher for CWH43 variant carriers compared with that for noncarriers (unadjusted OR 5.67, 95% CI 0.96-108.55, p = 0.057), and this was consistent after adjusting for sex and height (OR 5.42, 95% CI 0.87-106.37, p = 0.073). DESH was present in 56.7% of noncarriers and only 21.4% of carriers (p = 0.016), while sulcal trapping was also more prevalent among noncarriers (67.2% vs 35.7%, p = 0.030). All 8 of the 15 variant carriers who underwent ventriculoperitoneal shunting at our institution experienced ambulatory improvements. Discussion: CWH43 variants are frequent in patients with NPH. Predicted loss-of-function mutations were the most common; we identified missense mutations that require further study. Our findings suggest that congenital factors, rather than malabsorption or vascular dysfunction, are primary contributors to the CWH43-related NPH clinical syndrome.

18.
Medicine (Baltimore) ; 102(24): e34017, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37327267

RESUMO

We previously demonstrated that increased expression of the SERPINA5 gene is associated with hippocampal vulnerability in Alzheimer's disease (AD) brains. SERPINA5 was further demonstrated to be a novel tau-binding partner that colocalizes within neurofibrillary tangles. Our goal was to determine whether genetic variants in the SERPINA5 gene contributed to clinicopathologic phenotypes in AD. To screen for SERPINA5 variants, we sequenced 103 autopsy-confirmed young-onset AD cases with a positive family history of cognitive decline. To further assess the frequency of a rare missense variant, SERPINA5 p.E228Q, we screened an additional 1114 neuropathologically diagnosed AD cases. To provide neuropathologic context in AD, we immunohistochemically evaluated SERPINA5 and tau in a SERPINA5 p.E228Q variant carrier and a matched noncarrier. In the initial SERPINA5 screen, we observed 1 individual with a rare missense variant (rs140138746) that resulted in an amino acid change (p.E228Q). In our AD validation cohort, we identified an additional 5 carriers of this variant, resulting in an allelic frequency of 0.0021. There was no significant difference between SERPINA5 p.E228Q carriers and noncarriers in terms of demographic or clinicopathologic characteristics. Although not significant, on average SERPINA5 p.E228Q carriers were 5 years younger at age of disease onset than noncarriers (median: 66 [60-73] vs 71 [63-77] years, P = .351). In addition, SERPINA5 p.E228Q carriers exhibited a longer disease duration than noncarriers that approached significance (median: 12 [10-15]) vs 9 [6-12] years, P = .079). More severe neuronal loss was observed in the locus coeruleus, hippocampus, and amygdala of the SERPINA5 p.E228Q carrier compared to noncarrier, although no significant difference in SERPINA5-immunopositive lesions was observed. Throughout the AD brain in either carrier or noncarrier, areas with early pretangle pathology or burnt-out ghost tangle accumulation did not reveal SERPINA5-immunopositive neurons. Mature tangles and newly formed ghost tangles appeared to correspond well with SERPINA5-immunopositive tangle-bearing neurons. SERPINA5 gene expression was previously associated with disease phenotype; however, our findings suggest that SERPINA5 genetic variants may not be a contributing factor to clinicopathologic differences in AD. SERPINA5-immunopositive neurons appear to undergo a pathologic process that corresponded with specific levels of tangle maturity.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Estudos Transversais , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Encéfalo/patologia , Hipocampo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Inibidor da Proteína C/metabolismo
19.
Commun Biol ; 6(1): 503, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188718

RESUMO

Despite decades of genetic studies on late-onset Alzheimer's disease, the underlying molecular mechanisms remain unclear. To better comprehend its complex etiology, we use an integrative approach to build robust predictive (causal) network models using two large human multi-omics datasets. We delineate bulk-tissue gene expression into single cell-type gene expression and integrate clinical and pathologic traits, single nucleotide variation, and deconvoluted gene expression for the construction of cell type-specific predictive network models. Here, we focus on neuron-specific network models and prioritize 19 predicted key drivers modulating Alzheimer's pathology, which we then validate by knockdown in human induced pluripotent stem cell-derived neurons. We find that neuronal knockdown of 10 of the 19 targets significantly modulates levels of amyloid-beta and/or phosphorylated tau peptides, most notably JMJD6. We also confirm our network structure by RNA sequencing in the neurons following knockdown of each of the 10 targets, which additionally predicts that they are upstream regulators of REST and VGF. Our work thus identifies robust neuronal key drivers of the Alzheimer's-associated network state which may represent therapeutic targets with relevance to both amyloid and tau pathology in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Humanos , Doença de Alzheimer/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo
20.
BMC Genomics ; 24(1): 171, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016279

RESUMO

Chromatin immunoprecipitation (ChIP) is an antibody-based approach that is frequently utilized in chromatin biology and epigenetics. The challenge in experimental variability by unpredictable nature of usable input amounts from samples and undefined antibody titer in ChIP reaction still remains to be addressed. Here, we introduce a simple and quick method to quantify chromatin inputs and demonstrate its utility for normalizing antibody amounts to the optimal titer in individual ChIP reactions. For a proof of concept, we utilized ChIP-seq validated antibodies against the key enhancer mark, acetylation of histone H3 on lysine 27 (H3K27ac), in the experiments. The results indicate that the titration-based normalization of antibody amounts improves assay outcomes including the consistency among samples both within and across experiments for a broad range of input amounts.


Assuntos
Sequenciamento de Cromatina por Imunoprecipitação , Histonas , Sequenciamento de Cromatina por Imunoprecipitação/métodos , Imunoprecipitação da Cromatina/métodos , Histonas/genética , Cromatina , Anticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...